

CERTIFICATE OF ACCREDITATION

The ANSI National Accreditation Board

Hereby attests that

Houston Precision Incorporation 6633 Polk Street Houston, TX 77011

Fulfills the requirements of

ISO/IEC 17025:2017

and

ANSI/NCSL Z540-1-1994 (R2002)

In the field of

CALIBRATION

This certificate is valid only when accompanied by a current scope of accreditation document. The current scope of accreditation can be verified at <u>www.anab.org</u>.

Jason Stine, Vice President Expiry Date: 28 April 2025 Certificate Number: AC-3202

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017

AND

ANSI/NCSL Z540-1-1994 (R2002)

Houston Precision Incorporation

6633 Polk Street Houston, TX 77011 John Christodoulou 713-943-2721

CALIBRATION

Valid to: April 28, 2025

Certificate Number: AC-3202

Length – Dimensional Metrology

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Calipers ^{1,2}	Up to 6 in (6 to 80) in	840 μin (740 + 17 <i>L</i>) μin	Gage Blocks
Height Gages ^{1,2}	Up to 6 in (6 to 80) in	840 μin (740 + 17 <i>L</i>) μin	Gage Blocks
Outside Micrometers ¹	Up to 1 in (6 to 80) in	73 μin 860 μin	Gage Blocks
Optical Comparators ^{1,2} X-Y Linearity	Up to 6 in (6 to 30) in	150 μin (87 + 9.4 <i>L</i>) μin	Glass Grid
Angle	Up to 90°	1.3"	Glass Grid
Magnification	10X, 20X, 30X	0.002 3 in	Magnification Scale
Surface Plates ^{1,2} Overall Flatness Local Area Flatness	Up to 170 in <i>DL</i>	(18 + 1.1 <i>DL</i>) μin	In accordance with ASME B89.3.7 using Electronic Level System
(Repeat Readings)	Up to 0.04 in	7 μin	Repeat-O-Meter
MIC-TRAC 1,2	Up to 12 in (12 to 24) in (24 to 36) in	$(44 + 3.8L) \mu in$ $(39 + 4.2L) \mu in$ $(91 + 2.1L) \mu in$	Renishaw XL-80 Laser Measurement System
Micrometer Standards ²	Up to 6 in (6 to 24) in (24 to 36) in	930 μin (920 + 1.1 <i>L</i>) μin (910 + 1.7 <i>L</i>) μin	Gagemaker MIC TRAC Measurement System

Version 001 Issued: April 28, 2023

Length – Dimensional Metrology

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Micrometer Standards ²	(36 to 80) in	(830 + 3.4 <i>L</i>) µin	Gagemaker MIC TRAC Measurement System, Renishaw XL-80 Laser Measurement System

Thermodynamic

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Pyrometers ¹	(50 to 700) °C	2.7 °C	Presys T1200PIR Blackbody Source (flat plate) $\mathcal{E} = 0.99, \lambda = (8 \text{ to } 14) \mu \text{m}$

Calibration and Measurement Capability (CMC) is expressed in terms of the measurement parameter, measurement range, expanded uncertainty of measurement and reference standard, method, and/or equipment. The expanded uncertainty of measurement is expressed as the standard uncertainty of the measurement multiplied by a coverage factor of 2 (*k*=2), corresponding to a confidence level of approximately 95%.

Notes:

1. On-site calibration service is available for this parameter, since on-site conditions are typically more variable than those in the laboratory, larger measurement uncertainties are expected on-site than what is reported on the accredited scope.

2. L =length in inches.

3. This scope is formatted as part of a single document including Certificate of Accreditation No. AC-3202.

Jason Stine, Vice President

www.anab.org