ANSI National Accreditation Board

CERTIFICATE OF ACCREDITATION

The ANSI National Accreditation Board
Hereby attests that
Houston Precision Incorporation
6633 Polk Street
Houston, TX 77011

Fulfills the requirements of

ISO/IEC 17025:2017

and
ANSI/NCSL Z540-1-1994 (R2002)
In the field of
CALIBRATION
This certificate is valid only when accompanied by a current scope of accreditation document.
The current scope of accreditation can be verified at www.anab.org.

Expiry Date: 28 April 2025
Certificate Number: AC-3202

ANSI National Accreditation Board

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017

AND

ANSI/NCSL Z540-1-1994 (R2002)
Houston Precision Incorporation
6633 Polk Street
Houston, TX 77011
John Christodoulou 713-943-2721

CALIBRATION

Valid to: April 28, 2025
Certificate Number: AC-3202

Length - Dimensional Metrology

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Calipers ${ }^{1,2}$	$\begin{aligned} & \text { Up to } 6 \text { in } \\ & (6 \text { to } 80) \text { in } \\ & \hline \end{aligned}$	$\begin{gathered} 840 \mu \text { in } \\ (740+17 L) \mu \text { in } \\ \hline \end{gathered}$	Gage Blocks
Height Gages 1,2	Up to 6 in (6 to 80) in	$\begin{gathered} 840 \mu \mathrm{in} \\ (740+17 L) \mu \mathrm{in} \\ \hline \end{gathered}$	Gage Blocks
Outside Micrometers ${ }^{1}$	Up to 1 in (6 to 80) in	$\begin{gathered} \hline 73 \mu \mathrm{in} \\ 860 \mu \mathrm{in} \\ \hline \end{gathered}$	Gage Blocks
Optical Comparators ${ }^{1,2}$ X-Y Linearity Angle Magnification	Up to 6 in (6 to 30) in Up to 90° 10X, 20X, 30X	$\begin{gathered} 150 \mu \mathrm{in} \\ (87+9.4 L) \mu \mathrm{in} \\ 1.3 " \\ 0.0023 \mathrm{in} \\ \hline \end{gathered}$	Glass Grid Glass Grid Magnification Scale
Surface Plates ${ }^{1,2}$ Overall Flatness Local Area Flatness (Repeat Readings)	Up to $170 \mathrm{in} D L$ Up to 0.04 in	$\begin{gathered} (18+1.1 D L) \mu \mathrm{in} \\ 7 \mu \mathrm{in} \\ \hline \end{gathered}$	In accordance with ASME B89.3.7 using Electronic Level System Repeat-O-Meter
MIC-TRAC ${ }^{1,2}$	Up to 12 in (12 to 24) in (24 to 36) in	$\begin{aligned} & (44+3.8 L) \mu \mathrm{in} \\ & (39+4.2 L) \mu \mathrm{in} \\ & (91+2.1 L) \mu \mathrm{in} \\ & \hline \end{aligned}$	Renishaw XL-80 Laser Measurement System
Micrometer Standards ${ }^{2}$	Up to 6 in (6 to 24) in (24 to 36) in	$\begin{gathered} 930 \mu \mathrm{in} \\ (920+1.1 L) \mu \mathrm{in} \\ (910+1.7 L) \mu \mathrm{in} \\ \hline \end{gathered}$	Gagemaker MIC TRAC Measurement System

Length - Dimensional Metrology

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Micrometer Standards ${ }^{2}$	$(36$ to 80$)$ in	$(830+3.4 L) \mu \mathrm{in}$	Gagemaker MIC TRAC Measurement System, Renishaw XL-80 Laser Measurement System

Thermodynamic

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
${\text { Pyrometers }{ }^{1}}$	$(50 \text { to } 700)^{\circ} \mathrm{C}$	$2.7^{\circ} \mathrm{C}$	Presys T1200PIR Blackbody Source (flat plate)
$\varepsilon=0.99, \lambda=(8$ to 14) Mm			

Calibration and Measurement Capability (CMC) is expressed in terms of the measurement parameter, measurement range, expanded uncertainty of measurement and reference standard, method, and/or equipment. The expanded uncertainty of measurement is expressed as the standard uncertainty of the measurement multiplied by a coverage factor of $2(k=2)$, corresponding to a confidence level of approximately 95%.
Notes:

1. On-site calibration service is available for this parameter, since on-site conditions are typically more variable than those in the laboratory, larger measurement uncertainties are expected on-site than what is reported on the accredited scope.
2. $L=$ length in inches.
3. This scope is formatted as part of a single document including Certificate of Accreditation No. AC-3202.

Jason Stine, Vice President

